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Abstract

The shared-memory programming model is a very effective way to achieve parallelism on shared

memory parallel computers. As great progress was made in hardware and software technologies,

performance of parallel programs with compiler directives has demonstrated large improvement.

The introduction of OpenMP directives, the industrial standard for shared-memory programming,

has minimized the issue of portability. In this study, we have extended CAPTools, a computer-

aided parallelization toolkit, to automatically generate OpenMP-based parallel programs with

nominal user assistance. We outline techniques used in the implementation of the tool and discuss

the application of this tool on the NAS Parallel Benchmarks and several computational fluid

dynamics codes. This work demonstrates the great potential of using the tool to quickly port

parallel programs and also achieve good performance that exceeds some of the commercial tools.

Keywords: OpenMP directives, computer-aided tools, automated parallel code generation, NAS

Parallel Benchmarks.

1 Introduction

Porting applications to high performance parallel computers is always a challenging task. It is time

consuming and costly. With rapid progressing in hardware architectures and increasing complexity of real

applications in recent years, the problem becomes even more sever. Today, scalability and high

performance are mostly involving hand-written parallel programs using message-passing libraries (e.g.

MPI). However, this process is very difficult and often error-prone. The recent reemergence of shared-

memory parallel (SMP) architectures, such as the cache coherent Non-Uniform Memory Access

(ccNUMA) architecture used in the SGI Origin2000, show good prospects for scaling beyond hundreds of

processors. Programming on an SMP is simplified by working in a globally accessible address space. The

user can supply compiler directives to parallelize the code without explicit data partitioning. Computation

is distributed inside a loop based on the index range regardless of data location and the scalability is

achieved by taking advantage of hardware cache coherence. The recent emergence of OpenMP [13] as an

industry standard offers a portable solution for implementing directive-based parallel programs for SMPs.

OpenMP overcomes the portability issues encountered by machine-specific directives without sacrificing

much of the performance and has gained popularity quickly.

Perhaps the main disadvantage of programming with directives is that inserted directives may not

necessarily enhance performance. In the worst cases, it can create erroneous results when used incorrectly

(writing message passing codes is even more error-prone). While vendors have provided tools to perform
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error-checkingandprofiling [10], automationin directiveinsertionis very limitedandoftenfailedon
largeprograms,primarilydueto thelackof a thoroughenoughdatadependenceanalysis.To overcome
thedeficiency,wehavedevelopedatoolkit,CAPO,to automaticallyinsertOpenMPdirectivesinFortran
programsand apply a degreeof optimization.CAPO is aimedat taking advantageof detailed
interproceduraldatadependenceanalysisprovidedby Computer-Aided Parallelization Tools (CAPTools)

[4], developed by the University of Greenwich, to reduce potential errors made by users and, with

nominal help from user, achieve performance close to that obtained when directives are inserted by hand.

Our approach is differed from other tools and compilers in two respects: 1) emphasizing the quality of

dependence analysis and relaxing much of the time constraint on the analysis; 2) performing directive

insertion and preserving the original code structure for maintainability. Translation of OpenMP codes to

executables is left to proper OpenMP compilers.

In Section 2, we first outline the OpenMP programming model and give an overview of CAPTools and its

extension, CAPO, for generating OpenMP programs. Then, in Section 3 we discuss the implementation of

CAPO. Case studies of using CAPO to paraUelize the NAS Parallel Benchmarks and two realistic

computational fluid dynamics (CFD) applications are presented in Section 4 and conclusions are given in

the last section.

2 Automatic Generation of OpenMP Directives

2.1 The OpenMP programming model

OpenMP [13] was designed to facilitate portable implementation of shared memory parallel programs. It

includes a set of compiler directives and callable runtime library routines that extend Fortran, C and C++

to support shared memory parallelisrrL It promises an incremental path for parallelizing sequential

software, as well as targeting at scalability and performance for any complete rewrites or new

construction of applications.

OpenMP follows the fork-and-join execution model. A fork-and-join program initializes as a single

lightweight process, called the master thread. The master thread executes sequentially until the first

parallel construct (OMP P/LRALL, EI,) is encountered. At that point, the master thread creates a team of

threads, including itself as a member of the team. to concurrently execute the statements in the parallel

construct. When a work-sharing construct such as a parallel do (OMP DO) is encountered, the workload

is distributed among the members of the team. An implied synchronization occurs at the end of the DO

loop unless a "lqOWAIT" is specified. Data sharing of variables is specified at the start of parallel or work-

sharing constructs using the SHARED and PRIVATE clauses. In addition, reduction operations (such as

summation) can be specified by the REDUCTION clause. Upon completion of the parallel construct, the

threads in the team synchronize and only the master thread continues execution. The fork-and-join

process can be repeated many times in the course of program execution.

Beyond the inclusion of parallel constructs to distribute work to multiple threads. OpenMP introduces a

powerful concept of orphan directives that greatly simplifies the task of implementing coarse grain

parallel algorithms. Orphan directives are directives outside the lexical extent of a parallel region. This

allows the user to specify control or synchronization from anywhere inside the parallel region, not just

from the lexically contained region.
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2.2 CAPToois

The Computer-Aided Parallelization Tools (CAPTools) [4] is a software toolkit that was designed to

automate the generation of message-passing parallel code. CAPTOOls accepts FORTRAN-77 serial code

as input, performs extensive dependence analysis, and uses domain decomposition to exploit parallelism.

The tool employs sophisticated algorithms to calculate execution control masks and minimize

communication. The generated parallel codes contain portable interface to message passing standards,

such as MPI and PVM, through a low-overhead library.

There are two important strengths that make CAPTools stands out. Firstly, an extensive set of extensions

[5] to the conventional dependence analysis techniques has allowed CAPTools to obtain much more

accurate dependence information and, thus, produce more efficient parallel code. Secondly, the tool

contains a set of browsers that allow user to inspect and assist parallelization at different stages.

2.3 Generating OpenMP directives

The goal of developing computer-aided tools to help parallelize applications is to let the tools do as much

as possible and minimize the amount of tedious and error-prone work performed by the user. The key to

automatic detection of parallelism in a program and, thus parallelization is to obtain accurate data

dependences in the program. Generating OpenMP directives is simplified somehow because we are now

working in a globally addressed space without explicitly concerning data distribution. However, we still

have to realize that there are always cases in which certain conditions could prevent tools from detecting

possible parallelization, thus, an interactive user environment is also important.

The design of the CAPTools-based automatic parallelizer with OpenMP, CAPO, had kept the above

tactics in mind. CAPO uses the data dependence analysis engine in CAPTools, exploits loop level

parallelism in a program, and inserts OpenMP directives automatically. The schematic structure of CAPO

is illustrated in Figure 1. The detailed implementation of the tool is given in Section 3. CAPO lakes a

serial code as input and first performs the data dependence analysis. User knowledge on certain input

parameters in the source code may be entered to assist this analysis for more accurate results. The process

of generating OpenMP directives is summarized in the following three stages.

1) ldentif)., parallel loops and parallel regions. The loop-level analysis loops are classified as parallel

(including reduction), serial or potential pipeline based on the data dependence information. Parallel loops

to be distributed with work-sharing directives for parallel execution are identified by traversing the call

graph of the program from top to down. Only outer-most parallel loops are considered, partly due to the

very limited support of multi-level parallelization in available OpenMP compilers. Parallel regions are

then formed around the distributed parallel loops. Attempt is also made to identify and create parallel

pipelines. Details are given in Sections 3.1-3.3.

2) Optimize loops and regions. This stage is mainly for reducing overhead caused by fork-and-join

and synchronization. A parallel region is first expanded as far as possible and may include calls to

subroutines that contain additional ¢orphaned) parallel loops. Regions are then merged together if there is

no violation of data usage in doing so. Region expansion is currentl3 limited to within a subroutine.

Synchronization optimization between loops in a parallel region is performed by checking if the loops can

be executed asynchronously. Details are given in Sections 3.2 and 3.4.
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3) Transform codes and insert

directives. Variables in common

blocks are analyzed for their usage in

all parallel regions in order to

identify threadprivate common

blocks. If a private variable is used in

a non-threadprivate common block,

the variable is treated with a special

code transformation. A routine needs

to be duplicated if its usage conflicts

at different calling points. Details are

given in Sections 3.5-3.7.

By traversing the call graph one

more time OpenMP directives are

lastly added for parallel regions and

parallel loops with variables properly

listed. The variable usage analysis is

performed at several points to

identify how variables are used (e.g.

private, shared, reduction, etc.) in a

loop or region. Such analysis is
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Figure 1: Schematic flow chart of the CAPO architecture.
required for the identification of loop

types, the construction of parallel regions, the treatment of private variables in common blocks, and the

insertion of directives.

Intermediate results can be stored into or retrieved from a database. User assistance to the parallelization

process is possible through browsers implemented in CAPO (Directives Browser) and in CAPTools. The

Directives Browser is designed to provide more interactive information from the parailelization process,

such as reasons why loops are parallel or serial, distributed or not distributed. User can concentrate on

areas where potential improvements could be made, for example, by removing false data dependences. It

is part of the iterative process of parallelization.

3 Implementation

In the following subsections, we will give some implementation details of CAPO organized according to

the components outlined in Section 2.3.

3.1 Loop-level analysis

In the loop-level analysis, the data dependence information is used to classify loops in each routine. Loop

types include parallel (including reduction), serial, and pipeline. A parallel loop is a loop with no loop-

carried data dependences and no exiting statements that jump out of the loop (e.g. RETURN). Loops with

I/O (e.g. READ. hrRTTE) statements are excluded from consideration at this point. Parallel loop includes
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thecasewherea variableis rewrittenduringtheiterationof theloopbut thevariablecanbeprivatized
(i.e.havingalocalcopyoneachthread)toremovetheloop-carriedoutputdependence.

A reductionloopisconsideredasa specialparallelloopsincetheloopcanfirst update partial results in

parallel on each thread and then update the final result atomically (or reduction). The reduction

operations, such as "+", "-", "rain", "max", etc. can be executed in a CRITICAL section.

A special class of loops, called pipeline loop, has loop-carried true dependencies and the lengths of these

dependence vectors are determinable and with the same sign. Such a loop can potentially be used to form

parallel pipelining with an outside loop nesting. Compiler techniques for finding pipeline parallelism

through affine transforms are discussed in [1 l]. The pipeline parallelism can be implemented in OpenMP

directives with point-to-point synchronization. This is discussed in Section 3.3.

A serial loop is a loop that can not be run in parallel due to loop-carded data dependences, I/O or exiting

statements. However, a serial loop may be used for the formation of a parallel pipeline.

3.2 Setup of parallel region

In order to achieve good performance, it is not enough to simply stay with parallel loops at a finer grained

level. In the context of OpenMP, it is possible to express coarser-grained parallelism with parallel regions.

Our next task is to use the loop-level information to define these parallel regions.

There are several steps to construct parallel regions:

a) Identify parallel loops to be distributed by traversing the call graph in a top-down approach. Only

outer-most parallel loops with enough granularity are considered. Parallel regions are then formed

around the distributed parallel loops, including pipeline loops if no parallel loops can be found at

the same level and parallel pipelines can be formed.

b) Expand each parallel region as much as possible in a routine to the top-most loop nest that

contains no I/O and exiting statements and is not part of another parallel region. If a variable will

be rewritten by multiple threads in the potential parallel region and the variable cannot be

privatized (the memory access conflict test), back down one loop nest level. A reduction loop is in

a parallel region by itself.

c) Include in the region any preceded code blocks that satisfy the memory access conflict test and are

not yet included in other parallel regions. Orphaned directives will be used in routines that are

called inside a parallel region but outside a distributed parallel loop.

d) Join two neighboring regions to form a larger parallel region if possible.

e) Treat parallel pipelines across subroutine boundaries if needed tsee next subsection).

3.3 Pipeline setup

A potential pipeline loop (as introduced in Section 3.1) can be identified by analyzin G the dependence

vectors in symbolic form. In order to set up a parallel pipeline, an outer loop nest is required. If the top

loop in a potentially parallel region is a pipeline loop and the loop is also in the top-level loop nesting of

the routine, then the loop is further checked for loop nest in the immediate parent routine. The loop in the

parent routine can be used to form an "upper" level parallel pipeline only if all the following tests are
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true:a)sucha parentloopnestexists,b)eachroutinecalledinsidetheparentloopcontainsonlyasingle
parallelregion,andc) exceptfor pipelineloopsall distributedparallelloopscanrunasynchronously(see
Section3.4).If anyofthetestsfailed,thepipelineloopwill betreatedasaserialloop.

OpenMPprovidesdirectives(e.g."OMP FLUSH")andlibrary functionsto performthepoint-to-point
synchronization,whichmakestheimplementationof pipelineparallelismpossiblewithdirectives.These
directivesandfunctionsareusedto ensurethepipelinedcodesectionwill not beexecutedin a thread
beforetheworkin theneighboringthreadisdone.Suchanexecutionrequirestheschedulingschemefor
thepipelineloopto beSTATICandORDERED. Our implementation of parallel pipelines with directives

is started from an example given in the OpenMP Program Application Interface [13]. The pipeline

algorithm is used for parallelizing the NAS benchmark LU in Section 4.1 and also described in [12].

3.4 End-of-loop synchronization

Synchronization is used to ensure the correctness of program execution after a parallel construct (such as

END PARALLEL or END DO). By default, synchronization is added at the end of a parallel loop.

Sometime the synchronization at the end of a loop can be eliminated to reduce the overhead. We used a

technique similar to the one in [15] to remove synchronization between two loops.

To be able to execute two loops asynchronously and to avoid a thread synchronization directive between

them we have to perform a number of tests aside from the dependence information provided by

CAPTOOls. The tests verify whether a thread executing a portion of the instructions of one loop will not

read/write data read/written by a different thread executing a portion of another loop. Hence. for each

non-private array we check that the set of written locations of the array by the In-st thread and the set of

read/written locations of the array by the second thread do not intersect. The condition is known as the

Bernstein condition (see [9]). If Bernstein condition (BC) is true the loops can be executed

asynchronously. The BC test is performed in two steps. The final decision is made conservatively,: if there

is no proof that BC is true it set to be false. We assume that the same number of threads execute both

loops, the number of threads is larger than one and there is an array read/written in both loops.

Check the number of loop iterations. Since the number of the threads can be arbitrary, the number of

iterations performed in each loop must be the same. If it cannot be proved that the number of iterations is

the same for both loops the Bernstein condition set to be false.

Compare array indices. For each reference to a non-privatizable array in the left hand side (LHS) of one

loop and for each reference to the same array in another loop we compare the array indices. If we can not

prove for at least one dimension that indices in both references are different then we set BC to be false.

The condition can be relaxed if we assume the same thread schedule is used for both loops.

3.5 Variable usage analysis

Properly, identifying variable usage is very, important for the parallel performance and the correctness of

program execution. Variables that would cause memory access conflict among threads need to be

privatized so that each thread will work on a local copy. For cases where the privatization is not possible.

for instance, a variable would partially be updated by each thread, the variable should be treated as shared

and the work in the loop or region can only be executed in sequential (except for the reduction operation).

Private variables are identified by examining the data dependence information, in particular, output
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dependencefor memoryaccessconflict and true dependence for value assignment. Partial updating of

variables is checked by examining array index expressions.

With OpenMP, if a private variable needs its initial value from outside a parallel region, the

FIRSTPRIVATE clause can be used to obtain an initial copy of the original value; if a private variable is

used after a parallel region, the LASTPRIVATE clause can be used to update the shared variable.

The reduction operation is commonly encountered in calculation. A typical implementation of parallel

reduction has a private copy of each reduction that is first created for each thread, the local value is

calculated on each thread, and the global copy is updated according to the reduction operator. OpenMP

only supports reductions for scalar values. For array, we first transform the code section to create a local

array and, then, update the global copy in a CRITICAL section.

3.6 Private variables in contain blocks

For a private variable, each thread keeps a local copy and the original shared variable is untouched during

the course of updating the local copy. If a variable declared in a common block is private in a loop,

changes made to the variable through a subroutine call may not be updated properly for the local copy of

this variable. If all the variables in the common block are privatizable in the whole program, the common

block can be declared as threadprivate. However, if the common block can not be thread-privatized,

additional care is needed to treat the private variable.

The following algorithm is used to treat private variables in a common block. The algorithm identifies

and performs the necessary code transformation to ensure the correctness of variable privatization. Let us

use the following convention: R_INSIDE for routine called inside a parallel loop, R_OUTSIDE for

routine called outside a parallel loop, R_CALL for routine in a call statement, R_CALLBY for routine that

calls the current routine, and V (or VC, VD, VN) for a variable named in a routine.

Trea tPri va re(V,R_0RIG. call statement) {

checkV usageincallstatement

ifV is not used in the call (via dependences) ] ] is on the command parse tree

[ [ is not defined in a regular common block in a subroutine along the call path
return

TreatVinCall (VC,R_CALL) (V isreferredasVC inR_CALL) {

if VC is in the argument list of R_CALL
return VC

if R_CALL is R OUTSIDE {

if VC is not declared in R_CALL {

replicate the common block in which V is named as VN
set VC to VN from the common block

set V to VN in the private variable list if R_CALL==R_ORIG
}

}
else {

add VC to the argument list of R_CALL

ifVC is defined in a common block of R_CALL

add RCALL & VC to RenList (for variable renaming later on)
else declare VC in RCALL
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foreachcalledbystatementof R_CALL{
VDisthenameof VCusedin R_CALLBY

Trea tVinCall(VD, R CALLBY) and set VD to the returned value

add VD to the argument of call statement to R_CALL in R_CALLBY

}
for each call statement in R CALL

TreatPrivate<VC, R_CALL, callstatement in R CALL)

}
return VC

Rename common block variables listed in RenLi s t.

The algorithm starts with private variables listed for a parallel region in routine R.._ORIG, one variable at

a time. It is used recursively for each call statement in the parallel region along the call graph. A list of

routine-variable pairs (R_CALL,VC) is stored in RenList during the process to track where private

variables appear in common blocks. These variables in common blocks are renamed at the end.

As an example in Figure 2 the private array B is assigned inside subroutine SUB via the common block

/CSUB/ in loop $2. Applying the above algorithm, the private variable B is added as C to the argument

list of SUB and the original variable C in the common block in SUB is renamed to C CAP to avoid usage

conflict. In this way the local copy of B inside loop $2 will be updated properly in subroutine SUB.

S1

$2

$3

$4

$5

common

&

do j=l, ny

call sub(j,

do i=l, nx

a(i,j) =

end do

end do

/csub/ b(100) ,

a(100,100)

nx)

b(±

subroutine sub(j nx)

common /csub/ c(100),

& a(100,100)

c(1) = a(l,j)

c(nx) = a(nx, j)

do i=2, nx-I

c(i) = (a(i+l,j) +

& a(i-l,3) )*0.5

end do

return

end

S1 COMMON/CSUB/B(IOO),A(IO0,100)

!$OMP PARALr-I_L DO PRIVATE(I,J,B)

$2 DO J=l, NY

$3 CALL SUB(J, k_, B)

DO I=l, NX

A(I,J) = B(I)

END DO

END DO

l$OblP END PARALLEL DO

$4

$5

S6

SUBROUTINE SUB (J, NX, C)

COMMON/CSUB/C_CAP (I00) ,A(100, i00)

DIMENSION C(IO0 )

C(1) = A(I,J)

C(NX) = A(NX,J,_

DO I=2, NX-I

C(I) = (A(I-I,J)+A(I-I,J))*0.5

END DO

RETURN

END

Figure 2: An example o[treating a private variable in a common block.

3.7 Routine duplication

Routine duplication is performed after all the analyses are done but before directives are inserted. A

routine needs to be duplicated if it causes usage conflicts at different calling points. For example, if a

routine contains parallel regions and is called both inside and outside other parallel regions, the routine is
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duplicatedsothattheoriginalroutineis usedoutsideparallelregionsandthesecondcopycontainsonly
orphaneddirectiveswithout"OMPPARALLEL"andis usedinsideparallelregions.Routineduplication
isoftenusedinamessage-passingprogramtohandledifferentdatadistributionsin thesameroutine.

4 Case Studies

We have applied CAPO to parallelize the NAS parallel benchmarks and two computational fluid

dynamics (CFD) codes well known in the aerospace field: ARC3D and OVERFLOW. The parallelization

(see Section 2.3) started with the interprocedural data dependence analysis on sequential codes. This step

was the most computationally intensive part. The result was saved to an application database for later use.

The loop and region level analysis was then carried out. At this point, the user inspects the result and

decides if any changes are needed. The user assists the analysis by providing additional information on

input parameters and removing any false dependences that could not be resolved by the tool. This is an

iterative process, with user interaction involved. As we will see in the examples, the user interaction is

nominal. OpenMP directives were lastly inserted.

In the case studies, we used an SGI workstation (R5K, 150MHz) and a Sun El0000 node to run CAPO.

The resulting OpenMP codes were tested on an SGI Origin2000 system, which consisted of 64 CPUs and

16 GB globally addressable memory. Each CPU in the system is a RIOK 195 MHz processor with 32KB

primary data cache and 4MB secondary data cache. The SGI's MIPSpro Fortran 77 compiler (7.2.1) was

used for compilation with the "-03 -rap" flag.

4.1 The NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) were designed to compare the performance of parallel computers

and are widely recognized as a standard indicator of computer performance. The NPB suite consists of

five kernels and three simulated CFD applications derived from important classes of aerophysics

applications. The five kernels mimic the computational core of five numerical methods used by CFD

applications. The simulated CFD applications reproduce much of the data movement and computation

found in full CFD codes. Details of the benchmark specifications can be found in [2] and the MPI

implementations of NPB are described in [3].

In this study we used six benchmarks (LU, SP, BT, FT, MG and CG) from the sequential version of

NPB2.3 [3] with additional optimization described in [7]. Parallelization of the benchmarks with CAPO is

straightforward except for FT where additional user interaction was needed. User knowledge on the grid

size (> 6) was entered for the data dependence analysis of BT, SP and LU. In all cases, the parallelization

process for each benchmark took from tens of minutes up to one hour. most of the time being spent in the

data dependence analysis. The performance of CAPO generated codes is summarized in Figure 3 together

with comparison to other parallel versions of NPB: MP1 from NPB2.3. hand-coded OpenMP [7]. and

versions generated with the commercial tool SGI-PFA [17].

CAPO was able to locate effective parallelization at the outer-most loop level for the three application

benchmarks and automatically pipelined the SSOR algorithm in LU. As shown in Figure 3, the

performance of CAPO-BT. SP and LU is within 10% to the hand-coded OpenMP version and much better

than the results from SGI-PFA. The SGI-PFA curves represent results from the parallel version generated

by SGI-PFA without any change for SP and with user optimization for BT (see [17] for details). The
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worseperformanceof SGI-PFAsimplyindicatestheimportanceof accurateinterproceduraldependence
analysisthat usuallycannotbeemphasizedin a compiler.It shouldbe pointedout that thesequential
versionusedin the SGI-PFAstudywasnot optimized,thus,the sequentialperformanceneedsto be
countedfor thecomparison.Thehand-codedMPI versionsscaledbetter,especiallyfor LU. Weattribute
the performancedegradationin the directiveimplementationof LU to lessdatalocality and larger
synchronizationoverheadin the I-D pipelineusedin the OpenMPversionas comparedto the 2-D
pipelineusedin theMPIversion.

Thebasicloopstructurefor
theFastFourierTransform
(FFI') in onedimensionin
FF is as follows.

DO K=I, D3

DO J=l, D2

DO I=l, D1

Y(I) = X(I,J,K)

END DO

CALL CFFTZ ( .... Y)

DO I=l, D1

X(I,J,K) = Y(I)

END DO

END DO

END DO

A slice of the 3-D data (X)

is fn'st copied to a 1-D

work array (Y). The 1-D

FFT routine CFFTZ is

This is consistent with the result of a study from [12].
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Figure 3: Comparison of the OpenMP NPB generated by CAPO with other

parallel versions." MPl from NPB2.3, OpenMP by hand, and SGI-PFA.

called to work on Y. The returned result in Y is then copied back to the 3-D array (X). Due to the

complicated pattern of loop limits inside CFFTZ, CAPTools could not disprove the loop-carried true

dependences by the working array Y for loop K. These dependences were deleted by hand in CAPO to

identify the K loop as a parallel loop.

The resulted parallel FT code gave a reasonable perfornmnce as indicated by the curve with filled circles

in Figure 3. It does not scale as well as the hand-coded versions (both in MPI and OpenMP), mainly due

to the unparallelized code section for the matrix creation which was artificially done with random number

generators. Restructuring the code section was done in the hand-coded version to parallelize the matrix

creation. Again, the SGI-PFA generated code performed worse.

The directive code generated by CAPO for MG performs 36% worse on 32 processors than the hand-

coded version, primarily due to an unparallelized loop in routine norm2u3. The loop contains two

reduction operations of different types. One of the reductions was expressed in an IF statement, which

was not detected by CAPO. thus. the routine was ran in serial. Although this routine takes only about 2%

of the total execution time on a single node. it translates into a large portion of the parallel execution on

large number of processors, for example, 40% on 32 processors. All the parallel versions achieved similar

results for CG.
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4.2 ARC3D

ARC3D is a moderate-sizeCFD application.It solvesEuler and Navier-Stokesequationsin three
dimensionsusingasinglerectilineargrid.ARC3Dhasastructuresimilarto NPB-SPbutcontainscurve
linear coordinates,turbulentmodelsand more realisticboundaryconditions.The Beam-Warming
algorithmis used to approximately factorize an implicit scheme of finite difference equations, which is

then solved in three directions alternatively.

For generating the OpenMP parallel version of ARC3D, we used a serial code that was already optimized

for cache performance by hand [16], The parallelization process with CAPO was straightforward and

OpenMP directives were inserted without further user interaction. The parallel version was tested on the

Origin2000.and the result for a 194x194x194-size problem is shown in the left panel of Figure 4. The

results from a hand-parallelized version with SGI multi-tasking directives (MT by hand) [16] and a

message-passing version generated by CAPTools (CAP MPI) [8] from the same serial version are also

included in the figure for comparison.

As one can see from the figure, the OpenMP version generated by CAPO is essentially the same as the

hand-coded version in performance. This is indicative of the accurate data dependence analysis and

sufficient parallelism that was exploited in the outer-most loop level. The MPI version is about 10%

worse than the directive-based versions. The MPI version uses extra buffers for communication and this

could contribute to the increase of execution time.

4.3 OVERFLOW

OVERFLOW is widely used for airflow simulation in the aerospace community. It solves compressible

Navier-Stokes equations with first-order implicit time scheme, complicated turbulence model and

Chimera boundary condition in multiple zones. The code has been parallelized by hand [6] with several

approaches: PVM for zone-level parallelization only, MPI for both inter- and intra-zone parallelization,

multi-tasking directives, and multi-level parallelization. This code offers a good test case for our tool not

only because of its complexity but also its size (about 100K lines of FORTRAN 77).

In this study, we used the sequential version (1.Sf) of OVERFLOW. CAPO took 25 hours on a Sun E10K

node to complete the data dependence analysis. A fair amount of effort was spent on pruning data

dependences that were placed due to lack of necessary knowledge during the analysis. An example of

false dependence is illustrated in the following code segment:

NTMP2 = JD*KD*31

DO I00 L:LS,LE

CALL GETARX (NTHP2 ,_IP2, ITHP2 )

CALL WORK(L,T}4P2(ITHP2,1) ,TMP2(ITMP2,7) .... )

CALL FREARX (NTMP2 ,_2, ITMP2 )

I00 CONTINUE

Inside the loop nest, the memory space for an array TMP2 is first allocated by GETAP/K. The working

array is then used in WORK and freed afterwards. However. the data analysis has reviex_ed that the loop

contains loop-carried true dependences caused by variable TMP2, thus. the loop can only be executed in

serial. The memory allocation and de-allocation are performed dynamically and cannot be handled by

CAPO. This kind of false dependence can safely be removed with Dependence Browser included in the

tool. Even so. CAPO provides an easy way for user to interact with the parailelization process. The
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OpenMP version was generated within a day after the analysis was completed and an additional few days

were used to test the code.

The right panel of Figure 4 shows the

execution time per time-iteration of

the CAPO-OMP version compared

with the hand-coded MPI version and

hand-coded directive (MT) version.

All three versions were running with a

test case of size 69x61x50, 210K grid

points in single zone. Although the

scaling is not quite linear (when

comparing to ARC3D), especially for

more than 16 processors, the CAPO

version out-performed both hand-

coded versions. The MPI version
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Figure 4: Comparison of execution times of CAPO generated

parallel codes with hand-coded parallel versions for two CFD

applications: ARC3D on the left and OVERFLOW on the right.
contains sizable extra codes [6] to

handle intra-zone data distributions and communications. It is not surprising that the overhead is

unavoidably large. However, the MPI version is catching up with the CAPO-OMP version on large

number of processors. On the other hand, further review has indicated that the multi-tasking version used

a fairly similar parallelization strategy as CAPO did, but in quite a few small routines the MT version did

not place any directives for the hope that the compiler (SGI-PFA in this case) would automatically

parallelize loops inside these routines. The performance number seemed to have indicated otherwise.

We also tested with a large problem of 1.5M grid points. The result was not included in the figure but

CAPO's version has achieved 18-fold speedup on 32 processors of the Origin2000 (10 out of 32 for the

small test case). It is not surprising that the problem with large grid size has achieved better parallel

performance.

5 Related Work

There are a number of tools developed for code parallelization on both distributed and shared memory

systems. The KAPro-toolkit [10] from Kuck and Associates, Inc. performs data dependence analysis and

automatically inserts OpenMP directives in a certain degree. KAI has also developed several useful tools

to ensure the correctness of directives insertion and help user to profile parallel codes. The SUIF

compilation system [I 8] from Standard is a research product that is targeted at parallel code optimization

for shared-memory system at the compiler level,

The SGI's MIPSpro compiler includes a tool, PFA. that tries to automatically detect loop-level

parallelism, insert compiler directives and transform loops to enhance their performance. SGI-PFA is

available on the Origin2000. Due to the constraints on compilation time, the tool usuallx cannot perform a

comprehensive dependence analysis, thus. the performance of generated parallel programs is very limited.

User intervention with directives is usually necessary for better performance. For this purpose. Parallel

Analyzer View (PAV), which annotate the results of dependence analysis of PFA and present them
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graphically,canbeusedto helpuserinsertdirectivesmanually.Moredetails of a study with SGI-PFA

can be found in [17].

VAST/Parallel [14] from Pacific-Sierra Research is an automatic parallelizing preprocessor. The tool

performs data dependence analysis for loop nests and supports the generation of OpenMP directives.

Parallelization tools like FORGExplorer [1] and CAPTOOls [4] emphasize the generation of message

passing parallel codes for distributed memory systems. These tools can easily be extended to handle

parallel codes in the shared-memory arena. Our work is such an example. As discussed in previous

sections, the key to the success of our tool is the ability to obtain accurate data dependences combined

with user guidance. An ability to handle large applications is also important.

6 Conclusion and Future Work

In summary, we have developed the tool CAPO that automatically generates directive-based parallel

programs for shared memory machines. The tool has been successfully used to parallelize the NAS

parallel benchmarks and several CFD applications with CAPO, as summarized in Table 1 which included

also information for another CFD code, INS3D, the tool was applied to.

Table 1: Summary of CAPO applied on the NAS Parallel Benchmarks and three CFD applications.

Application

NPB
ARC3D OVERFLOW INS3D

BT, SP, LU FT, CG, MG

Code Size ~3000 lines/ -2000 lines/ -4000 lines 851 routines, 256 routines,
benchmark benchmark 100K lines 41K lines

Code Analysis a) 30 mins to 10 mins to 40 mins 25 hours 42 hours
1 hour 30 mins

Code Generation b) 1 rain 1 min 1 min 1 day 2 days

Testing c) 1 day 1 day 1 day 3 days 3 days

within 5-10% within 6%within

10% for CG
30-36% for

FT,MG

slightly better
(see text in

Section 4.3)

Performance

Compared to
Hand-coded

Version

no hand-coded

parallel
version

a) "Code Analysis" refers to time spent on the data dependence analysis, for NPB and ARC3D on an

SGI Indv workstation and for OVERFLOW and INS3D on a Sun EIO000 node.

b) "Code Generation" includes time user spent on interacting with the tool and code restructuring b_"

hand (only for INS3D in four routines). The restructure involves mostly loop interchange and loop
rinse that cannot be done by the tool.

c) "Testing'" includes debugging and rulmil2g a code and collecting results.

By taking advantage of the intensive data dependence analysis from CAPTools. CAPO has been able to

produce parallel programs with performance close to hand-coded versions in a relatively short period of
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time.It shouldbepointedout,however,thattheresultsdidnotshowtheeffortin cacheoptimizationof
theserialcode,suchasfor ARC3D.Ourapproachis differentfromparallelcompilersin that it spends
muchof itstimeonwholeprogramanalysistodiscoveraccuratedependenceinformation.Thegenerated
parallelcodeis producedusinga source-to-sourcetransformationwith very little modificationto the
originalcodeand,therefore,is easilymaintainable.

ForlargerandmorecomplexapplicationssuchasOVERFLOW,it isourexperiencethatthetoolwill not
beableto generateefficientparallelcodeswithoutanyuserinteractions.The importanceof a tool,
however, is its ability to quicklypinpointtheproblematiccodesin this case.CAPO(via Directives
Browser)wasabletopointouta smallpercentageof codesectionswhereuserinteractionswererequired
for thetestcases.

Futureworkwill befocusedin thefollowingareas:

• Includeaperformancemodel for optimal placement of directives.

• Apply data distribution directives (such as those defined by SGI) rather than relying on the

automatic data placement policy, First-Touch, by the operating system to improve data layout and

minimize number of costly remote memory reference.

• Develop a methodology to work in a hybrid approach to handle parallel applications in a

heterogeneous environment or a cluster of SMP's. Exploiting multi-level parallelism is important.

• Develop an integrated working environment for sequential optimization, code transformation,

code parallelization, and performance analysis.

CAPO is available for testing. A copy of the tool can be obtained from the authors.
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